Weighted composition operators from Bergman-type spaces into Bloch spaces
نویسندگان
چکیده
Let D be the open unit disk in the complex plane C. Denote by H(D) the class of all functions analytic on D. An analytic self-map φ : D → D induces the composition operator Cφ on H(D), defined by Cφ ( f ) = f (φ(z)) for f analytic on D. It is a well-known consequence of Littlewood’s subordination principle that the composition operator Cφ is bounded on the classical Hardy and Bergman spaces (see, for example [1]). Recall that a linear operator is said to be bounded if the image of a bounded set is a bounded set, while a linear operator is compact if it takes bounded sets to sets with compact closure. It is interesting to provide a function theoretic characterization of when φ induces a bounded or compact composition operator on various spaces. The book [1] contains plenty of information on this topic. Let u be a fixed analytic function on the open unit disk. Define a linear operator uCφ on the space of analytic functions on D, called a weighted composition operator, by uCφ f = u · ( f ◦φ), where f is an analytic function on D. We can regard this operator as a generalization of a multiplication operator and a composition operator. A positive continuous function φ on [0,1) is called normal, if there exist positive numbers s and t, 0 < s < t, such that
منابع مشابه
Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملEssential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کاملProducts of multiplication, composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces
Let φ and ψ be holomorphic maps on such that φ( ) ⊂ . Let Cφ,Mψ and D be the composition, multiplication and differentiation operators, respectively. In this paper, we consider linear operators induced by products of these operators from Bergman-Nevanlinna spaces AβN to Bloch-type spaces. In fact, we prove that these operators map AβN compactly into Bloch-type spaces if and only if they map A β...
متن کاملEstimates of Norm and Essential norm of Differences of Differentiation Composition Operators on Weighted Bloch Spaces
Norm and essential norm of differences of differentiation composition operators between Bloch spaces have been estimated in this paper. As a result, we find characterizations for boundedness and compactness of these operators.
متن کامل